Fact of the Day


Solar Wind

The solar wind is a stream of charged particles (i.e., a plasma) which are ejected from the upper atmosphere of the sun. It consists mostly of high-energy electrons and protons (about 1 keV) that are able to escape the sun's gravity in part because of the high temperature of the corona and the high kinetic energy particles gain through a process that is not well understood at this time.

Many phenomena are directly related to the solar wind, including geomagnetic storms that can knock out power grids on Earth, aurorae (e.g., Northern Lights) and the plasma tail of a comet always pointing away from the sun. While early models of the solar wind used primarily thermal energy to accelerate the material, by the 1960s it was clear that thermal acceleration alone cannot account for the high speed solar wind. Some additional acceleration mechanism is required, but is not currently known, but most likely relates to magnetic fields in the solar atmosphere.

Earth itself is nominally protected from the solar wind by its magnetic field, which deflects charged particles but also serves as an electromagnetic energy transmission line to the Earth's upper atmosphere and ionosphere in the auroral zones. We only notice the solar wind when it is strong enough for this energy to produce phenomena such as the aurora and geomagnetic storms. Bright auroras strongly heat the ionosphere, causing its plasma to expand into the magnetosphere, increasing the size of the plasma geosphere, and causing escape of atmospheric matter into the solar wind. Geomagnetic storms result when the pressure of plasmas contained inside the magnetosphere is sufficiently large to inflate and thereby distort the geomagnetic field.

The solar wind blows a "bubble" in the interstellar medium (the rarefied hydrogen and helium gas that permeates the galaxy). The point where the solar wind's strength is no longer great enough to push back the interstellar medium is known as the heliopause, and is often considered to be the outer "border" of the solar system. The distance to the heliopause is not precisely known, and probably varies widely depending on the current velocity of the solar wind and the local density of the interstellar medium, but it is known to lie far outside the orbit of Pluto. Scientists hope to gain more perspective on the heliopause from data acquired through the Interstellar Boundary Explorer (IBEX) mission, to be launched in 2008.

Comments

Popular posts from this blog

18 DAYS: THE MAHBHARATA RETOLD (CONCEPT NOTES by GRANT MORRISON)

Where did the Universe come from? Part 3: Why the Big Bang was the most precisely planned event in all of history

I Feared UNTIL .......!!!